Multiple positive solutions for semilinear elliptic systems involving subcritical nonlinearities in R N
نویسندگان
چکیده
منابع مشابه
Multiple Positive Solutions for Semilinear Elliptic Equations in RN Involving Concave-Convex Nonlinearities and Sign-Changing Weight Functions
and Applied Analysis 3 Theorem 1.1. Assume that (A1) and (B1) hold. If λ ∈ 0,Λ0 , then Eλa,b admits at least one positive solution inH1 R . Associated with Eλa,b , we consider the energy functional Jλa,b inH1 R : Jλa,b u 1 2 ‖u‖H1 − λ q ∫ RN a x |u|dx − 1 p ∫
متن کاملMultiple solutions for an inhomogeneous semilinear elliptic equation in R
In this paper, we will investigate the existence of multiple solutions for the general inhomogeneous elliptic problem − u+ u = f (x, u) + μh (x) , x ∈ R , u ∈ H (RN) , (1.1)μ where h ∈ H−1 (RN), N ≥ 2, |f (x, u)| ≤ C1up−1 + C2u with C1 > 0, C2 ∈ [0, 1) being some constants and 2 < p < +∞. ∗Research supported in part by the Natural Science Foundation of China and NSEC †Research supported ...
متن کاملMultiple Positive Solutions for Kirchhoff Type Problems Involving Concave and Convex Nonlinearities in R
In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theor...
متن کاملMultiplicity of Positive Solutions for Semilinear Elliptic Systems
and Applied Analysis 3 Let Kλ,μ : E → R be the functional defined by Kλ,μ (z) = ∫ Ω (λf (x) |u| q + μg (x) |V| q ) dx ∀z = (u, V) ∈ E. (11) We know that Iλ,μ is not bounded below on E. From the following lemma, we have that Iλ,μ is bounded from below on the Nehari manifoldNλ,μ defined in (9). Lemma 3. The energy functional Iλ,μ is coercive and bounded below onNλ,μ. Proof. If z = (u, V) ∈ Nλ,μ, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2012
ISSN: 1687-2770
DOI: 10.1186/1687-2770-2012-118